Discovery Early Career Researcher Award - Grant ID: DE200100490
Funder
Australian Research Council
Funding Amount
$426,742.00
Summary
Understanding infection tolerance to improve management of wildlife disease. This project aims to investigate tolerance (the ability to limit the detrimental effects of infection) as a key animal defence strategy against disease. It focuses on diseases in natural systems, using the devastating amphibian fungal skin disease, chytridiomycosis, as a model. Expected outcomes include improved understanding of the relative importance of tolerance and resistance, and insight into the key immune and phy ....Understanding infection tolerance to improve management of wildlife disease. This project aims to investigate tolerance (the ability to limit the detrimental effects of infection) as a key animal defence strategy against disease. It focuses on diseases in natural systems, using the devastating amphibian fungal skin disease, chytridiomycosis, as a model. Expected outcomes include improved understanding of the relative importance of tolerance and resistance, and insight into the key immune and physiologic mechanisms underlying variations in tolerance. Anticipated benefits include improved strategies for mitigating infectious wildlife diseases via identifying targets for therapeutic interventions, ecological management and assisted-evolution strategies. This project should also benefit amphibian conservation globally.Read moreRead less
Outfoxing the fox: new cost-effective ways to protect threatened species. This project aims to address the damage caused by invasive foxes by applying new methods of protection for threatened species. This project expects to generate new knowledge in the areas of conservation biology and invasive species management by comparing the effectiveness of fox control strategies for improving the population viability of declining freshwater turtles. Expected outcomes of this project include a community- ....Outfoxing the fox: new cost-effective ways to protect threatened species. This project aims to address the damage caused by invasive foxes by applying new methods of protection for threatened species. This project expects to generate new knowledge in the areas of conservation biology and invasive species management by comparing the effectiveness of fox control strategies for improving the population viability of declining freshwater turtles. Expected outcomes of this project include a community-based conservation model that prevents turtle extinctions in south-eastern Australia at considerable cost savings. Significant benefits include improved management of the impacts of invasive species, and restoration of ecosystem services provided by the scavenging role of freshwater turtles for maintaining water quality.Read moreRead less
Nutritional requirements of the critically endangered corroboree frog. This project aims to test the effect of dietary carotenoids on an extensive range of fitness-determining traits in the endangered southern corroboree frog. Unprecedented rates of species extinction have been reported for all vertebrates, with amphibians most severely affected. Captive breeding programs play a key role in amphibian conservation, yet there is a lack of knowledge regarding the nutritional requirements of threate ....Nutritional requirements of the critically endangered corroboree frog. This project aims to test the effect of dietary carotenoids on an extensive range of fitness-determining traits in the endangered southern corroboree frog. Unprecedented rates of species extinction have been reported for all vertebrates, with amphibians most severely affected. Captive breeding programs play a key role in amphibian conservation, yet there is a lack of knowledge regarding the nutritional requirements of threatened species. Manipulating captive nutrition is a cost-effective action that will permit recovery teams to more efficiently implement conservation actions. The findings will be of major benefit to amphibian conservation globally.Read moreRead less
Taking eDNA underground: transforming assessment of subterranean ecosystems. This project aims to improve Environmental Impact Assessment and monitoring of subterranean ecosystems by developing a rigorous, credible and practicable environmental DNA assessment framework. Resource companies in Western Australia are mandated to assess groundwater biodiversity under Environmental Protection legislation. Current surveys are time-consuming (expensive) and biased toward common taxa. For regulators, sta ....Taking eDNA underground: transforming assessment of subterranean ecosystems. This project aims to improve Environmental Impact Assessment and monitoring of subterranean ecosystems by developing a rigorous, credible and practicable environmental DNA assessment framework. Resource companies in Western Australia are mandated to assess groundwater biodiversity under Environmental Protection legislation. Current surveys are time-consuming (expensive) and biased toward common taxa. For regulators, stakeholders and industry involved in this project we will provide real-world information and cost savings through innovation in understanding patterns in species boundaries and detection of subterranean fauna. The outcomes will be directly applicable to monitoring subterranean ecosystems across Australia and internationally.Read moreRead less
Functional characterisation of contaminant-nanoparticle associations. Nanoparticles present in the environment modify the movement and toxicity of contaminants. This project targets key gaps that hinder the ability to predict the fate and behaviour of environmental contaminants; this will lead to the optimisation of legislative framework and the management/remediation of contaminated sites (for example, mine sites, landfills).
Biomagnification of the biotoxin BMAA in the environment. Using unique models and technics, the project aims to demonstrate that long-term exposure to the blue green algae toxin β-N-methylamino-l-alanine (BMAA) leads to uptake, accumulation and toxicity within the central nervous system. The risks for heath, mechanisms of contamination and toxicity of BMAA are very poorly understood. Algal blooms cost the Australian community more than $250 million each year and represent a major health issue fo ....Biomagnification of the biotoxin BMAA in the environment. Using unique models and technics, the project aims to demonstrate that long-term exposure to the blue green algae toxin β-N-methylamino-l-alanine (BMAA) leads to uptake, accumulation and toxicity within the central nervous system. The risks for heath, mechanisms of contamination and toxicity of BMAA are very poorly understood. Algal blooms cost the Australian community more than $250 million each year and represent a major health issue for human and fauna. This project aims to be the first to fully characterise BMAA mechanisms of contamination and neurotoxicity and to highlight the major environmental risk of exposure of human to BMAA. It also aims to develop new and unique detection and quantification tools for BMAA.Read moreRead less
Designing effective fish-friendly waterway culverts: integration of hydrodynamics and swimming performance. Man-made in-stream structures (for example, dams and road crossings) have contributed to major declines in native fish numbers, with more than 6,000 barriers to fish migration occurring in New South Wales alone. Recognising this, Fisheries New South Wales led the development of national guidelines for the design and construction of fish friendly road crossings. Unfortunately, these guideli ....Designing effective fish-friendly waterway culverts: integration of hydrodynamics and swimming performance. Man-made in-stream structures (for example, dams and road crossings) have contributed to major declines in native fish numbers, with more than 6,000 barriers to fish migration occurring in New South Wales alone. Recognising this, Fisheries New South Wales led the development of national guidelines for the design and construction of fish friendly road crossings. Unfortunately, these guidelines have little empirical backing. This project will integrate data on the swimming ability of Australian fish species with culvert hydrodynamic modelling to better understand fish requirements in and around road crossings. These data will strengthen national design guidelines and provide the tools engineers and planners need to balance fish migration with effective water management.Read moreRead less
Quantitative metrics for determining aquifer ecosystem state. Clean groundwater comes from dirty surface water by way of biological purification. This project will develop quantitative ways to assess groundwater ecosystems to ensure the sustainable extraction of water and maintenance of these crucial ecosystems.
Robust strategies for restoring aquatic and riparian biodiversity. Effective restoration of Australia's degraded river ecosystems requires a diverse range of spatial data, models and a structured decision-making framework to predict ecological responses to alternative management interventions. This collaboration of universities and National Resource Management agencies will create the necessary tools to make and validate such predictions.
Have we already lost the Australian lungfish? This project aims to use radiocarbon ageing, conservation genetics and modelling to identify threats to the long-term survival of the Australian lungfish, the world's oldest living vertebrate. This project will provide managers with a powerful tool to prioritise management interventions to ensure the conservation of the species and to pull it back from extinction.