A stitch in time: evidence-based strategy to keep platypus from extinction. This project aims to assess the status of the iconic platypus, identified as ‘near-threatened’ in 2014. The project’s multidisciplinary approach plans to compare regulated and unregulated rivers to investigate metapopulation structure (via physical and genetic tagging), current condition and future adaptability of the species, as well as other threats and habitat quality. The project also links vulnerability of platypus ....A stitch in time: evidence-based strategy to keep platypus from extinction. This project aims to assess the status of the iconic platypus, identified as ‘near-threatened’ in 2014. The project’s multidisciplinary approach plans to compare regulated and unregulated rivers to investigate metapopulation structure (via physical and genetic tagging), current condition and future adaptability of the species, as well as other threats and habitat quality. The project also links vulnerability of platypus populations to conservation actions that reduce extinction risk, through rigorous decision analyses. It is anticipated that the project will deliver implementable conservation actions at relevant scales.Read moreRead less
Natural selection and the Tasmanian devil. This project aims to explain evolution of immune capabilities in response to disease threats in the wild by assessing the immune adaptive capabilities of Tasmanian devils in response to facial tumour disease. It plans to determine how the expression of immune genes differs between wild and captive populations. The project will combine immunology, epidemiology and evolutionary biology, to understand the role of host genetic and phenotypic adaptations to ....Natural selection and the Tasmanian devil. This project aims to explain evolution of immune capabilities in response to disease threats in the wild by assessing the immune adaptive capabilities of Tasmanian devils in response to facial tumour disease. It plans to determine how the expression of immune genes differs between wild and captive populations. The project will combine immunology, epidemiology and evolutionary biology, to understand the role of host genetic and phenotypic adaptations to disease threats. The project will assist in the development of diagnostic tools for managing this and other threatened species and for screening disease resistance markers across wild and captive insurance populations.Read moreRead less
Genomics and mixed source populations in wildlife translocations. Translocation is a conservation strategy to help the plight of endangered species, and is becoming increasing important to mitigate against climate change. However translocations often fail. Theory suggests mixing individuals from different source populations would benefit species' genomic diversity and potentially success rates, however this is untested in animals. Also unclear is what parts of the genome are important for mitiga ....Genomics and mixed source populations in wildlife translocations. Translocation is a conservation strategy to help the plight of endangered species, and is becoming increasing important to mitigate against climate change. However translocations often fail. Theory suggests mixing individuals from different source populations would benefit species' genomic diversity and potentially success rates, however this is untested in animals. Also unclear is what parts of the genome are important for mitigating against climate change. Using an endangered lizard model, this project aims to understand how to best start new populations by 1) providing the first empirical test in terrestrial vertebrates of using mixed source populations; and 2) uncovering regions of the genome important for considering in translocations.Read moreRead less
Contemporary and retrospective genomic analyses of tiger and white sharks. This project aims to elucidate population structure and spatiotemporal changes in population distribution of tiger and white sharks; estimate the effective number of individuals across populations; and investigate signatures of adaptive evolution in tiger- and white shark populations in response to exploitation and global change. It will perform high-resolution retrospective genomic analyses using DNA extracted from conte ....Contemporary and retrospective genomic analyses of tiger and white sharks. This project aims to elucidate population structure and spatiotemporal changes in population distribution of tiger and white sharks; estimate the effective number of individuals across populations; and investigate signatures of adaptive evolution in tiger- and white shark populations in response to exploitation and global change. It will perform high-resolution retrospective genomic analyses using DNA extracted from contemporary and archival tiger and white shark skeletal material held in museum and trophy collections around the world. This project expects to gain valuable insight into the biology of both species and provide information for conservation and management purposes.Read moreRead less
Collaborative science for monitoring of Northern Territory marine megafauna. The project’s aim is to map population connectivity and critical habitat for coastal marine megafauna in remote northern Australian waters, providing a more informed scientific base for biodiversity monitoring and management. The project will employ cutting edge methods in genetics and movement ecology and unite Indigenous rangers with marine national park managers and scientists. Expected outcomes include enhanced capa ....Collaborative science for monitoring of Northern Territory marine megafauna. The project’s aim is to map population connectivity and critical habitat for coastal marine megafauna in remote northern Australian waters, providing a more informed scientific base for biodiversity monitoring and management. The project will employ cutting edge methods in genetics and movement ecology and unite Indigenous rangers with marine national park managers and scientists. Expected outcomes include enhanced capacity for monitoring and conservation planning and new partnerships that will improve research capacity in remote environments. Benefits include environmental management led by Indigenous Traditional Owners, sea rangers and marine park managers, and conservation benefits to coastal dolphin and sea turtle species.Read moreRead less
Rediscovering Aboriginal dispersal pathways. This project aims to use cutting-edge and transdisciplinary tools in partnership with Aboriginal people to rediscover deliberate prehistoric plant dispersal pathways along the Australian east coast. By working on three unrelated species with similar disjunct distributions, expected outcomes include detecting significant ‘cultural’ vegetation patterns that will challenge current assumptions about 'natural' plant distributions. New associations between ....Rediscovering Aboriginal dispersal pathways. This project aims to use cutting-edge and transdisciplinary tools in partnership with Aboriginal people to rediscover deliberate prehistoric plant dispersal pathways along the Australian east coast. By working on three unrelated species with similar disjunct distributions, expected outcomes include detecting significant ‘cultural’ vegetation patterns that will challenge current assumptions about 'natural' plant distributions. New associations between plant biogeography and deliberate Aboriginal manipulation of Australian environments will benefit cultural heritage, land management and restoration initiatives.Read moreRead less
Addressing koala conservation management needs: applying novel genomic methods and assessing ecological exchangeability across the species range. One of Australia's most iconic species, the koala, is under threat. This project will use cutting edge whole-genome technology to assess levels of genetic diversity and population differentiation across the species range, to inform the setting of conservation management units.
Rediscovering Aboriginal dispersal pathways. This project aims to use cutting-edge and transdisciplinary tools in partnership with Aboriginal people to rediscover deliberate prehistoric plant dispersal pathways along the Australian east coast. By working on three unrelated species with similar disjunct distributions, expected outcomes include detecting significant ‘cultural’ vegetation patterns that will challenge current assumptions about 'natural' plant distributions. New associations between ....Rediscovering Aboriginal dispersal pathways. This project aims to use cutting-edge and transdisciplinary tools in partnership with Aboriginal people to rediscover deliberate prehistoric plant dispersal pathways along the Australian east coast. By working on three unrelated species with similar disjunct distributions, expected outcomes include detecting significant ‘cultural’ vegetation patterns that will challenge current assumptions about 'natural' plant distributions. New associations between plant biogeography and deliberate Aboriginal manipulation of Australian environments will benefit cultural heritage, land management and restoration initiatives.Read moreRead less
Coral resilience and the optimal management of biodiversity. This project aims to examine the resilience of coral biodiversity to disturbances and build on recently developed genomic resources to explore the genotypic traits that confer thermal tolerance. The project will research how coral biodiversity responds to climatic disturbances; the potential for acclimation and adaptation; and the best ways to monitor, manage and restore biodiversity. The project is expected to generate tangible outcom ....Coral resilience and the optimal management of biodiversity. This project aims to examine the resilience of coral biodiversity to disturbances and build on recently developed genomic resources to explore the genotypic traits that confer thermal tolerance. The project will research how coral biodiversity responds to climatic disturbances; the potential for acclimation and adaptation; and the best ways to monitor, manage and restore biodiversity. The project is expected to generate tangible outcomes and strategies to optimise the management of Australia’s coral biodiversity while engaging the public through museum-based outreach, in collaboration with government, regulatory sectors and an industry group. Read moreRead less
Genomes on islands: Improving management of Australia's threatened mammals. This project aims to improve the management of endangered mammals by combining data on genomic and morphological variation with results from conservation translocations. Using new genomics methods, the project will measure the effects of small population size on genetic diversity and mutation load, in extinct as well as remnant and translocated populations. The project will monitor seven intensively managed marsupial spe ....Genomes on islands: Improving management of Australia's threatened mammals. This project aims to improve the management of endangered mammals by combining data on genomic and morphological variation with results from conservation translocations. Using new genomics methods, the project will measure the effects of small population size on genetic diversity and mutation load, in extinct as well as remnant and translocated populations. The project will monitor seven intensively managed marsupial species to better understand how to mix populations for fauna restoration projects. This project should improve methods to promote species recovery in Australia and globally.Read moreRead less