Utilising innovative fishing technology to address key questions on the biology of Antarctic krill. Antarctic krill are an important species in the Southern Ocean supporting most of the Antarctic birds and mammals. A sustainable krill fishery is developing with krill products used in aquaculture and increasingly for human consumption. A new omega 3 krill oil industry has emerged and is rapidly expanding. The aim of the project is to predict the factors governing oil levels and the biochemical co ....Utilising innovative fishing technology to address key questions on the biology of Antarctic krill. Antarctic krill are an important species in the Southern Ocean supporting most of the Antarctic birds and mammals. A sustainable krill fishery is developing with krill products used in aquaculture and increasingly for human consumption. A new omega 3 krill oil industry has emerged and is rapidly expanding. The aim of the project is to predict the factors governing oil levels and the biochemical composition in krill which will help us understand growth, reproduction and recruitment. The research aims to also assess the possible effects of climate change on krill. Outcomes of this research aim to be used to manage the expanding krill fishery.Read moreRead less
Clothes, fibres and filters that reduce pollution by micro and nano debris. This project aims to provide scientifically verified methods to avoid, intercept and redesign products that cause the most abundant type of marine plastic pollution – clothing fibres - which has increased by over 450% in 60 years. It will determine how natural and plastic fibres, clothing brands and washing machine filters, alter fibre emissions and ecological impacts. This will enable protocols to improve products and t ....Clothes, fibres and filters that reduce pollution by micro and nano debris. This project aims to provide scientifically verified methods to avoid, intercept and redesign products that cause the most abundant type of marine plastic pollution – clothing fibres - which has increased by over 450% in 60 years. It will determine how natural and plastic fibres, clothing brands and washing machine filters, alter fibre emissions and ecological impacts. This will enable protocols to improve products and the environment, and reduce health risks that will benefit the public, government regulation and companies in designing "eco-friendly" products.Read moreRead less
Resolving human-flying fox conflict in the face of environmental change. Resolving human-flying fox conflict in the face of environmental change. This project aims to identify socially-acceptable priority areas to be managed for the long-term viability of flying-foxes under a changing climate, and develop strategies to mitigate human-flying fox conflict, using ecological and social analysis in a decision-theoretic framework. Flying-foxes are nationally protected mammals pivotal to Australia’s fo ....Resolving human-flying fox conflict in the face of environmental change. Resolving human-flying fox conflict in the face of environmental change. This project aims to identify socially-acceptable priority areas to be managed for the long-term viability of flying-foxes under a changing climate, and develop strategies to mitigate human-flying fox conflict, using ecological and social analysis in a decision-theoretic framework. Flying-foxes are nationally protected mammals pivotal to Australia’s forest ecosystems, but are threatened by habitat loss, extreme weather and legal culls at orchards. Their exceptional mobility puts them in frequent conflict with human settlements, leading to forced dispersals from roosts. Anticipated outcomes are the conservation of Australia’s flying-foxes and international understanding of how to resolve human conflict with highly mobile species that are threatened but locally abundant and controversial.Read moreRead less
The pharmacokinetics of plant secondary metabolites and their effects on feeding in the brushtail possum. Plant secondary metabolites (PSMs) are considered to protect against herbivory, although the mechanisms are not well understood. This project will determine how marsupial folivores avoid toxicity when browsing on Eucalyptus leaf. Blood levels of terpenes, phenols and their metabolites will be measured in the brushtail possum while it feeds on a diet of varying PSM content. We expect to be ab ....The pharmacokinetics of plant secondary metabolites and their effects on feeding in the brushtail possum. Plant secondary metabolites (PSMs) are considered to protect against herbivory, although the mechanisms are not well understood. This project will determine how marsupial folivores avoid toxicity when browsing on Eucalyptus leaf. Blood levels of terpenes, phenols and their metabolites will be measured in the brushtail possum while it feeds on a diet of varying PSM content. We expect to be able to show relationships between the ingestion and blood levels of PSMs and feeding behaviour. This will give a greater understanding of the effect of plant toxins on browsing behaviour, enabling improved foraging models and more effective habitat management.Read moreRead less
Estimating per capita use and release of chemicals by wastewater analysis. This project aims to systematically collect and analyse wastewater to assess human exposure to chemicals including drugs, pharmaceuticals, lifestyle chemicals and environmental pollutants. By combining temporal sampling from key sewage treatment plants with comprehensive nationwide sampling over the week of the 2016 census day, the project expects to estimate the per-capita human exposure to chemicals in the Australian po ....Estimating per capita use and release of chemicals by wastewater analysis. This project aims to systematically collect and analyse wastewater to assess human exposure to chemicals including drugs, pharmaceuticals, lifestyle chemicals and environmental pollutants. By combining temporal sampling from key sewage treatment plants with comprehensive nationwide sampling over the week of the 2016 census day, the project expects to estimate the per-capita human exposure to chemicals in the Australian population. Accurate and objective per-capita based consumption and release estimates for a wide range of chemicals is intended to provide a baseline against which to measure changes in our chemosphere.Read moreRead less
Improving prediction of rocky reef ecosystem responses to human impacts. This project aims to improve our understanding of inshore ecosystems to facilitate better management of our living marine heritage. The project first aims to extend field datasets on the density and distribution of thousands of marine fishes, invertebrates and macro-algae. These will then be combined using recent advances in quantitative ecological modelling to describe transfer of biomass between species at hundreds of sit ....Improving prediction of rocky reef ecosystem responses to human impacts. This project aims to improve our understanding of inshore ecosystems to facilitate better management of our living marine heritage. The project first aims to extend field datasets on the density and distribution of thousands of marine fishes, invertebrates and macro-algae. These will then be combined using recent advances in quantitative ecological modelling to describe transfer of biomass between species at hundreds of sites, with a primary focus on southern Australia. It is anticipated that this will provide site-level indices of major food web processes that, when combined with ‘before, after, control, impact’ data, will improve prediction of ecological consequences of fishing, climate change, pest outbreaks and pollution.Read moreRead less
Modelling and control of mosquito-borne diseases in Darwin using long-term monitoring. Management of mosquito populations is a high public health priority because these insects can spread diseases such as malaria, dengue, Ross River virus, Barmah Forest virus, Murray Valley encephalitis, Japanese encephalitis and Kunjin/West Nile virus. Our research into the effectiveness of mosquito control programs in Darwin is of immediate national relevance and priority given the need to Safeguard Australia ....Modelling and control of mosquito-borne diseases in Darwin using long-term monitoring. Management of mosquito populations is a high public health priority because these insects can spread diseases such as malaria, dengue, Ross River virus, Barmah Forest virus, Murray Valley encephalitis, Japanese encephalitis and Kunjin/West Nile virus. Our research into the effectiveness of mosquito control programs in Darwin is of immediate national relevance and priority given the need to Safeguard Australia from invasive diseases. There is an urgency to undertake our research because global environmental change and increasing movements of people (particularly military personnel) from overseas regions where these diseases are endemic is increasing the vulnerability of northern Australia to the (re)establishment of mosquito borne diseases.Read moreRead less
ARC Research Network for Understanding and Managing Australian Biodiversity. Biodiversity research is strong in Australia but is highly uncoordinated and, along with recent major breakthroughs in both theory and techniques, has highlighted the need for a Network to properly integrate research and focus it on the most appropriate scale. This Network aims to bring together a diverse spectrum of highly experienced and early career researchers to pool their ideas and expertise to allow them to deter ....ARC Research Network for Understanding and Managing Australian Biodiversity. Biodiversity research is strong in Australia but is highly uncoordinated and, along with recent major breakthroughs in both theory and techniques, has highlighted the need for a Network to properly integrate research and focus it on the most appropriate scale. This Network aims to bring together a diverse spectrum of highly experienced and early career researchers to pool their ideas and expertise to allow them to determine how best to describe Australia's current biodiversity and the biological and environmental history leading up to the present. A major outcome will be the ability to predict the impacts of environmental change on biodiversity to assist management decisions across Australia, with lessons of global importance.Read moreRead less
Novel governance for marine ecosystems in rapid transition. This project will develop the governance knowledge required to manage rapidly changing marine ecosystems. Australia has the third largest marine estate globally, and its ecosystems support critical economic and sociocultural values. However, human pressures are tipping marine ecosystems into alternate states, inspiring new interventions to sustain industries and communities. New interventions necessitate transitions in governance. Expec ....Novel governance for marine ecosystems in rapid transition. This project will develop the governance knowledge required to manage rapidly changing marine ecosystems. Australia has the third largest marine estate globally, and its ecosystems support critical economic and sociocultural values. However, human pressures are tipping marine ecosystems into alternate states, inspiring new interventions to sustain industries and communities. New interventions necessitate transitions in governance. Expected outcomes include a comparative understanding of novel marine interventions now underway globally, and practical guidance on how to diagnose and implement responsible marine governance. Significant benefits include enhanced governance and sustainability of Australian and international marine ecosystems.Read moreRead less
Utilising plant-sediment-feedbacks to enhance seagrass restoration. This project aims to investigate the role of sediment microbes in promoting the health of threatened seagrass species across Australia. This project expects to create new knowledge for enhancing restoration success for seagrasses by integrating macro and micro-ecology, environmental genomics, plant ecology and ecosystem function (e.g. nutrient and biogeochemistry cycling). Expected outcomes are new knowledge to enhance seagrass ....Utilising plant-sediment-feedbacks to enhance seagrass restoration. This project aims to investigate the role of sediment microbes in promoting the health of threatened seagrass species across Australia. This project expects to create new knowledge for enhancing restoration success for seagrasses by integrating macro and micro-ecology, environmental genomics, plant ecology and ecosystem function (e.g. nutrient and biogeochemistry cycling). Expected outcomes are new knowledge to enhance seagrass restoration utilising sediment microbes that can be integrated into management and policy. This project should provide significant benefits, such as the development of key strategic alliances to enhance management of seagrasses, and the ecosystem services, and economic and social benefits they provide.Read moreRead less