Beyond fire frequency: understanding fire season for ecosystem management. This project aims to investigate how the season of fire, arguably one of the biggest changes brought about by fire management, can impact ecosystems and the persistence of threatened species. The project expects to generate new yet fundamental knowledge of how the timing of fire has shifted, using a multidisciplinary team with expertise in remote sensing and fire ecology, and experimentally assess fire season effects on s ....Beyond fire frequency: understanding fire season for ecosystem management. This project aims to investigate how the season of fire, arguably one of the biggest changes brought about by fire management, can impact ecosystems and the persistence of threatened species. The project expects to generate new yet fundamental knowledge of how the timing of fire has shifted, using a multidisciplinary team with expertise in remote sensing and fire ecology, and experimentally assess fire season effects on soil properties and plant persistence. The project aims to enhance capacity of conservation agencies across Australia to effectively implement fires while maintaining biodiversity values. This should provide significant benefits for informed management of the large numbers of threatened species under their protection.Read moreRead less
Utilising innovative fishing technology to address key questions on the biology of Antarctic krill. Antarctic krill are an important species in the Southern Ocean supporting most of the Antarctic birds and mammals. A sustainable krill fishery is developing with krill products used in aquaculture and increasingly for human consumption. A new omega 3 krill oil industry has emerged and is rapidly expanding. The aim of the project is to predict the factors governing oil levels and the biochemical co ....Utilising innovative fishing technology to address key questions on the biology of Antarctic krill. Antarctic krill are an important species in the Southern Ocean supporting most of the Antarctic birds and mammals. A sustainable krill fishery is developing with krill products used in aquaculture and increasingly for human consumption. A new omega 3 krill oil industry has emerged and is rapidly expanding. The aim of the project is to predict the factors governing oil levels and the biochemical composition in krill which will help us understand growth, reproduction and recruitment. The research aims to also assess the possible effects of climate change on krill. Outcomes of this research aim to be used to manage the expanding krill fishery.Read moreRead less
Special Research Initiatives - Grant ID: SR180100005
Funder
Australian Research Council
Funding Amount
$1,225,000.00
Summary
Remediation of PFAS contaminated soil using soil washing and immobilisation. This project aims to assess the applicability of soil washing and immobilisation as cost-effective techniques for the remediation of per- and poly-fluroalkyl substance (PFAS) contaminated Australian soils. The project expects to establish the efficacy of the remediation of a range of PFASs, including many polyfluorinated precursors of perfluorinated, chemically-persistent legacy pollutants which are of concern. The proj ....Remediation of PFAS contaminated soil using soil washing and immobilisation. This project aims to assess the applicability of soil washing and immobilisation as cost-effective techniques for the remediation of per- and poly-fluroalkyl substance (PFAS) contaminated Australian soils. The project expects to establish the efficacy of the remediation of a range of PFASs, including many polyfluorinated precursors of perfluorinated, chemically-persistent legacy pollutants which are of concern. The project will provide a scientific basis for understanding the benefits and limitations associated with soil washing and immobilisation techniques and a more comprehensive understanding of future liabilities associated with formation of PFASs from precursors remaining in remediated soils. Collaboration with stakeholders will ensure benefits are captured both commercially and environmentally, as well as removing a potential and on-going health threat to communities exposed to these contaminants.Read moreRead less
Using ancient DNA to understand Australia's past and manage its future. The aim of this program is to establish an ancient DNA research centre for Australia, and use long-term natural records to investigate the genetic responses of animals, plants, and micro-organisms to environmental change. By examining biological processes before, during, and after major changes (eg coral bleaching, salination) the evolution and selective pressures at important genetic loci will be identified, and related to ....Using ancient DNA to understand Australia's past and manage its future. The aim of this program is to establish an ancient DNA research centre for Australia, and use long-term natural records to investigate the genetic responses of animals, plants, and micro-organisms to environmental change. By examining biological processes before, during, and after major changes (eg coral bleaching, salination) the evolution and selective pressures at important genetic loci will be identified, and related to environmental change to enhance effected planning and future management of Australia's ecosystems, biodiversity and tourism. Key records will come from lake-beds, billabongs, coral reefs, rodent nests, megafaunal bones, and ancient human material.Read moreRead less
Modelling and control of mosquito-borne diseases in Darwin using long-term monitoring. Management of mosquito populations is a high public health priority because these insects can spread diseases such as malaria, dengue, Ross River virus, Barmah Forest virus, Murray Valley encephalitis, Japanese encephalitis and Kunjin/West Nile virus. Our research into the effectiveness of mosquito control programs in Darwin is of immediate national relevance and priority given the need to Safeguard Australia ....Modelling and control of mosquito-borne diseases in Darwin using long-term monitoring. Management of mosquito populations is a high public health priority because these insects can spread diseases such as malaria, dengue, Ross River virus, Barmah Forest virus, Murray Valley encephalitis, Japanese encephalitis and Kunjin/West Nile virus. Our research into the effectiveness of mosquito control programs in Darwin is of immediate national relevance and priority given the need to Safeguard Australia from invasive diseases. There is an urgency to undertake our research because global environmental change and increasing movements of people (particularly military personnel) from overseas regions where these diseases are endemic is increasing the vulnerability of northern Australia to the (re)establishment of mosquito borne diseases.Read moreRead less
A global standard for the status of Wetlands of International Importance. The project will develop and test a new global standard for the assessment and reporting on ecological condition of internationally important wetlands, listed under the Ramsar Convention. It has four aims: establishment of a strategic adaptive management and governance framework, a meta-analysis of the 2,303 internationally listed wetlands, development of a protocol for assessment and prediction and delivering a digital re ....A global standard for the status of Wetlands of International Importance. The project will develop and test a new global standard for the assessment and reporting on ecological condition of internationally important wetlands, listed under the Ramsar Convention. It has four aims: establishment of a strategic adaptive management and governance framework, a meta-analysis of the 2,303 internationally listed wetlands, development of a protocol for assessment and prediction and delivering a digital reporting platform for effective management. The project is significant because it tackles the decline of freshwater ecosystems, by targeting the most prominent wetlands. It also assists state and national governments to meet their obligations under the Ramsar Convention and most importantly guides more effective management.Read moreRead less
Saving Nemo: Reducing animal use in toxicity assessments of wastewater. Every day, Australians produce ~5 billion litres of wastewater, which contains a cocktail of chemicals. Industries that discharge wastewater are required to assess chemical risks to the receiving environments by conducting whole animal direct toxicity assessments (DTA), which are expensive and pose an ethical dilemma. Our preliminary research shows that new in vitro bioassays provide an ethical and cost effective alternative ....Saving Nemo: Reducing animal use in toxicity assessments of wastewater. Every day, Australians produce ~5 billion litres of wastewater, which contains a cocktail of chemicals. Industries that discharge wastewater are required to assess chemical risks to the receiving environments by conducting whole animal direct toxicity assessments (DTA), which are expensive and pose an ethical dilemma. Our preliminary research shows that new in vitro bioassays provide an ethical and cost effective alternative that could be incorporated into DTA programs if their ecological relevance can be demonstrated. This project will develop and validate a new and internationally significant suite of in vitro bioassays for incorporation into DTA programs, leading to more ethical, cost effective and improved environmental protection.Read moreRead less
Optimising seed sourcing for effective ecological restoration. This project aims to address the sourcing of native seed for ecological restoration under global change. The great demand for native seed to deliver ecological restoration provides a clear need and responsibility to use this seed as efficiently as possible. This project expects to develop detailed new knowledge that links plant and environmental genomics, plant physiology, seed and soil biology in embedded experiments at post-mining ....Optimising seed sourcing for effective ecological restoration. This project aims to address the sourcing of native seed for ecological restoration under global change. The great demand for native seed to deliver ecological restoration provides a clear need and responsibility to use this seed as efficiently as possible. This project expects to develop detailed new knowledge that links plant and environmental genomics, plant physiology, seed and soil biology in embedded experiments at post-mining rehabilitation sites. Expected outcomes include clear industry guidelines that refine seed sourcing strategies for ecological restoration for current and future climates. This should provide significant benefits for improved ecological restoration outcomes when using native seed today and into the future.Read moreRead less
Environmental Genomics: Mining, climate change, water, crime and health. The new Environmental Genomics approach will employ high-powered genome sequencing systems to perform some of the first detailed genetic studies of Australian environments. The resulting high-resolution data will comprise a genetic audit, providing essential information for the accurate measurement of climate and environmental change. This method will dramatically improve the speed, and power of environmental impact assessm ....Environmental Genomics: Mining, climate change, water, crime and health. The new Environmental Genomics approach will employ high-powered genome sequencing systems to perform some of the first detailed genetic studies of Australian environments. The resulting high-resolution data will comprise a genetic audit, providing essential information for the accurate measurement of climate and environmental change. This method will dramatically improve the speed, and power of environmental impact assessments, permitting responsible resource development with major benefits to industry and the economy. It will also create new tools to improve water management and quality, biosecurity, forensics/policing and human health, as reflected by the diverse range of industry partners supporting this project.Read moreRead less
ARC Research Network for Understanding and Managing Australian Biodiversity. Biodiversity research is strong in Australia but is highly uncoordinated and, along with recent major breakthroughs in both theory and techniques, has highlighted the need for a Network to properly integrate research and focus it on the most appropriate scale. This Network aims to bring together a diverse spectrum of highly experienced and early career researchers to pool their ideas and expertise to allow them to deter ....ARC Research Network for Understanding and Managing Australian Biodiversity. Biodiversity research is strong in Australia but is highly uncoordinated and, along with recent major breakthroughs in both theory and techniques, has highlighted the need for a Network to properly integrate research and focus it on the most appropriate scale. This Network aims to bring together a diverse spectrum of highly experienced and early career researchers to pool their ideas and expertise to allow them to determine how best to describe Australia's current biodiversity and the biological and environmental history leading up to the present. A major outcome will be the ability to predict the impacts of environmental change on biodiversity to assist management decisions across Australia, with lessons of global importance.Read moreRead less