Vision and remote sensing: using nature's technology to examine the health of The Great Barrier Reef and Moreton Bay. We aim to use what is known and what we will discover about animals visual systems to examine environmental health on The Great Barrier Reef and Moreton Bay. Technology and knowledge from 8 university departments, 4 industry partners, and 7 international collaborators will be combined to both learn and provide information. The innovative aspect of our approach is to examine the w ....Vision and remote sensing: using nature's technology to examine the health of The Great Barrier Reef and Moreton Bay. We aim to use what is known and what we will discover about animals visual systems to examine environmental health on The Great Barrier Reef and Moreton Bay. Technology and knowledge from 8 university departments, 4 industry partners, and 7 international collaborators will be combined to both learn and provide information. The innovative aspect of our approach is to examine the world with the eyes of birds, fish and invertebrates. Tricks animals employ to solve visual tasks will be implemented at scales of instrumentation from hand-held to remote sensing and used to address problems such as coral reef bleaching.Read moreRead less
Impact of increased sediment and nutrient discharges on the long-term sustainability of the Great Barrier Reef. The Great Barrier Reef, one of Australia's greatest natural assets, is under increasing threat from extreme climatic events caused by global warming and from land-based pollution. This research will identify the main sources of sediment and nutrient pollution caused by river runoff and by how much this has increased above 'natural levels'. We will discover how the very sensitive offsho ....Impact of increased sediment and nutrient discharges on the long-term sustainability of the Great Barrier Reef. The Great Barrier Reef, one of Australia's greatest natural assets, is under increasing threat from extreme climatic events caused by global warming and from land-based pollution. This research will identify the main sources of sediment and nutrient pollution caused by river runoff and by how much this has increased above 'natural levels'. We will discover how the very sensitive offshore coral reefs have responded to increased pollution and whether this is the cause of the very devastating crown-of-thorn-starfish infestations. Understanding the long-term effects of land-based pollution on the ecology of coral reefs in the GBR will thus provide a scientific basis to help ensure that it has a sustainable future.Read moreRead less
Conservation planning in a dynamic and uncertain world. Nature conservation planning is an emerging discipline at the interface of biological and mathematical sciences focused on designing conservation areas. We will improve existing tools for conservation planning, which almost always assume a static world, by developing theories and procedures for undertaking conservation planning in a dynamic and uncertain world. A risk assessment and decision-making framework will be developed so that a vari ....Conservation planning in a dynamic and uncertain world. Nature conservation planning is an emerging discipline at the interface of biological and mathematical sciences focused on designing conservation areas. We will improve existing tools for conservation planning, which almost always assume a static world, by developing theories and procedures for undertaking conservation planning in a dynamic and uncertain world. A risk assessment and decision-making framework will be developed so that a variety of landscape dynamics can be taken into account when planning reserves. This research will help to ensure that reserve networks designed in the future achieve their ultimate goal of the long-term persistence of biodiversity.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE200100490
Funder
Australian Research Council
Funding Amount
$426,742.00
Summary
Understanding infection tolerance to improve management of wildlife disease. This project aims to investigate tolerance (the ability to limit the detrimental effects of infection) as a key animal defence strategy against disease. It focuses on diseases in natural systems, using the devastating amphibian fungal skin disease, chytridiomycosis, as a model. Expected outcomes include improved understanding of the relative importance of tolerance and resistance, and insight into the key immune and phy ....Understanding infection tolerance to improve management of wildlife disease. This project aims to investigate tolerance (the ability to limit the detrimental effects of infection) as a key animal defence strategy against disease. It focuses on diseases in natural systems, using the devastating amphibian fungal skin disease, chytridiomycosis, as a model. Expected outcomes include improved understanding of the relative importance of tolerance and resistance, and insight into the key immune and physiologic mechanisms underlying variations in tolerance. Anticipated benefits include improved strategies for mitigating infectious wildlife diseases via identifying targets for therapeutic interventions, ecological management and assisted-evolution strategies. This project should also benefit amphibian conservation globally.Read moreRead less
Unlocking the secrets of mangrove conservation success. This project aims to address the deterioration of mangrove ecosystems. Mangroves support fisheries, shoreline protection and carbon sequestration. The project aims to identify social-economic conditions that enable effective conservation in mangroves over multiple spatial scales. The project will use state of the art datasets and innovative modelling approaches to understand how factors such as population, governance and access to markets i ....Unlocking the secrets of mangrove conservation success. This project aims to address the deterioration of mangrove ecosystems. Mangroves support fisheries, shoreline protection and carbon sequestration. The project aims to identify social-economic conditions that enable effective conservation in mangroves over multiple spatial scales. The project will use state of the art datasets and innovative modelling approaches to understand how factors such as population, governance and access to markets influence changes in mangrove extent and restoration success. Expected outcomes include implementation of more effective environmental programs in Australia and overseas. This should provide significant benefits, including more cost-effective allocation of resources and increased delivery of ecosystem services.Read moreRead less
Estimating per capita use and release of chemicals by wastewater analysis. This project aims to systematically collect and analyse wastewater to assess human exposure to chemicals including drugs, pharmaceuticals, lifestyle chemicals and environmental pollutants. By combining temporal sampling from key sewage treatment plants with comprehensive nationwide sampling over the week of the 2016 census day, the project expects to estimate the per-capita human exposure to chemicals in the Australian po ....Estimating per capita use and release of chemicals by wastewater analysis. This project aims to systematically collect and analyse wastewater to assess human exposure to chemicals including drugs, pharmaceuticals, lifestyle chemicals and environmental pollutants. By combining temporal sampling from key sewage treatment plants with comprehensive nationwide sampling over the week of the 2016 census day, the project expects to estimate the per-capita human exposure to chemicals in the Australian population. Accurate and objective per-capita based consumption and release estimates for a wide range of chemicals is intended to provide a baseline against which to measure changes in our chemosphere.Read moreRead less
Utilising innovative fishing technology to address key questions on the biology of Antarctic krill. Antarctic krill are an important species in the Southern Ocean supporting most of the Antarctic birds and mammals. A sustainable krill fishery is developing with krill products used in aquaculture and increasingly for human consumption. A new omega 3 krill oil industry has emerged and is rapidly expanding. The aim of the project is to predict the factors governing oil levels and the biochemical co ....Utilising innovative fishing technology to address key questions on the biology of Antarctic krill. Antarctic krill are an important species in the Southern Ocean supporting most of the Antarctic birds and mammals. A sustainable krill fishery is developing with krill products used in aquaculture and increasingly for human consumption. A new omega 3 krill oil industry has emerged and is rapidly expanding. The aim of the project is to predict the factors governing oil levels and the biochemical composition in krill which will help us understand growth, reproduction and recruitment. The research aims to also assess the possible effects of climate change on krill. Outcomes of this research aim to be used to manage the expanding krill fishery.Read moreRead less
Larval Dispersal And The Design Of Marine Reserve Networks: Benefits Within And Beyond Boundaries. Most marine organisms produce tiny offspring that are dispersed unknown distances by oceanic currents. Our present strategies to manage marine resources lack this vital piece of information. This study will apply two revolutionary techniques that finally enable us to determine how far marine larvae travel. Using the team that developed these techniques, field studies will for the first time measure ....Larval Dispersal And The Design Of Marine Reserve Networks: Benefits Within And Beyond Boundaries. Most marine organisms produce tiny offspring that are dispersed unknown distances by oceanic currents. Our present strategies to manage marine resources lack this vital piece of information. This study will apply two revolutionary techniques that finally enable us to determine how far marine larvae travel. Using the team that developed these techniques, field studies will for the first time measure both retention of fish larvae within marine protected areas and dispersal of larvae to adjacent fished areas on coral reefs. This information can be directly applied to optimize the size of reserves and their spacing in marine protected area networks.Read moreRead less
Special Research Initiatives - Grant ID: SR180100005
Funder
Australian Research Council
Funding Amount
$1,225,000.00
Summary
Remediation of PFAS contaminated soil using soil washing and immobilisation. This project aims to assess the applicability of soil washing and immobilisation as cost-effective techniques for the remediation of per- and poly-fluroalkyl substance (PFAS) contaminated Australian soils. The project expects to establish the efficacy of the remediation of a range of PFASs, including many polyfluorinated precursors of perfluorinated, chemically-persistent legacy pollutants which are of concern. The proj ....Remediation of PFAS contaminated soil using soil washing and immobilisation. This project aims to assess the applicability of soil washing and immobilisation as cost-effective techniques for the remediation of per- and poly-fluroalkyl substance (PFAS) contaminated Australian soils. The project expects to establish the efficacy of the remediation of a range of PFASs, including many polyfluorinated precursors of perfluorinated, chemically-persistent legacy pollutants which are of concern. The project will provide a scientific basis for understanding the benefits and limitations associated with soil washing and immobilisation techniques and a more comprehensive understanding of future liabilities associated with formation of PFASs from precursors remaining in remediated soils. Collaboration with stakeholders will ensure benefits are captured both commercially and environmentally, as well as removing a potential and on-going health threat to communities exposed to these contaminants.Read moreRead less
Innovative systematic conservation planning for Indigenous Land and Sea Country: Torres Strait as a case study. Australia’s Indigenous communities have responsibilities for managing their Land and Sea Country in partnership with governments. Much of Australia’s globally significant biodiversity occurs in Indigenous country. Effective management requires plans to be developed using both western science and Traditional Knowledge to enable local communities to protect both their culture and biodive ....Innovative systematic conservation planning for Indigenous Land and Sea Country: Torres Strait as a case study. Australia’s Indigenous communities have responsibilities for managing their Land and Sea Country in partnership with governments. Much of Australia’s globally significant biodiversity occurs in Indigenous country. Effective management requires plans to be developed using both western science and Traditional Knowledge to enable local communities to protect both their culture and biodiversity. This project will develop innovative scientific tools to assist Indigenous communities and governments to design and implement systematic conservation planning initiatives ‘on country’, using Torres Strait as a case study. The tools that are developed will have general relevance to Australian Indigenous communities and developing countries. Read moreRead less