Impact of increased sediment and nutrient discharges on the long-term sustainability of the Great Barrier Reef. The Great Barrier Reef, one of Australia's greatest natural assets, is under increasing threat from extreme climatic events caused by global warming and from land-based pollution. This research will identify the main sources of sediment and nutrient pollution caused by river runoff and by how much this has increased above 'natural levels'. We will discover how the very sensitive offsho ....Impact of increased sediment and nutrient discharges on the long-term sustainability of the Great Barrier Reef. The Great Barrier Reef, one of Australia's greatest natural assets, is under increasing threat from extreme climatic events caused by global warming and from land-based pollution. This research will identify the main sources of sediment and nutrient pollution caused by river runoff and by how much this has increased above 'natural levels'. We will discover how the very sensitive offshore coral reefs have responded to increased pollution and whether this is the cause of the very devastating crown-of-thorn-starfish infestations. Understanding the long-term effects of land-based pollution on the ecology of coral reefs in the GBR will thus provide a scientific basis to help ensure that it has a sustainable future.Read moreRead less
Utilising innovative fishing technology to address key questions on the biology of Antarctic krill. Antarctic krill are an important species in the Southern Ocean supporting most of the Antarctic birds and mammals. A sustainable krill fishery is developing with krill products used in aquaculture and increasingly for human consumption. A new omega 3 krill oil industry has emerged and is rapidly expanding. The aim of the project is to predict the factors governing oil levels and the biochemical co ....Utilising innovative fishing technology to address key questions on the biology of Antarctic krill. Antarctic krill are an important species in the Southern Ocean supporting most of the Antarctic birds and mammals. A sustainable krill fishery is developing with krill products used in aquaculture and increasingly for human consumption. A new omega 3 krill oil industry has emerged and is rapidly expanding. The aim of the project is to predict the factors governing oil levels and the biochemical composition in krill which will help us understand growth, reproduction and recruitment. The research aims to also assess the possible effects of climate change on krill. Outcomes of this research aim to be used to manage the expanding krill fishery.Read moreRead less
Special Research Initiatives - Grant ID: SR180100005
Funder
Australian Research Council
Funding Amount
$1,225,000.00
Summary
Remediation of PFAS contaminated soil using soil washing and immobilisation. This project aims to assess the applicability of soil washing and immobilisation as cost-effective techniques for the remediation of per- and poly-fluroalkyl substance (PFAS) contaminated Australian soils. The project expects to establish the efficacy of the remediation of a range of PFASs, including many polyfluorinated precursors of perfluorinated, chemically-persistent legacy pollutants which are of concern. The proj ....Remediation of PFAS contaminated soil using soil washing and immobilisation. This project aims to assess the applicability of soil washing and immobilisation as cost-effective techniques for the remediation of per- and poly-fluroalkyl substance (PFAS) contaminated Australian soils. The project expects to establish the efficacy of the remediation of a range of PFASs, including many polyfluorinated precursors of perfluorinated, chemically-persistent legacy pollutants which are of concern. The project will provide a scientific basis for understanding the benefits and limitations associated with soil washing and immobilisation techniques and a more comprehensive understanding of future liabilities associated with formation of PFASs from precursors remaining in remediated soils. Collaboration with stakeholders will ensure benefits are captured both commercially and environmentally, as well as removing a potential and on-going health threat to communities exposed to these contaminants.Read moreRead less
ARC Centre of Excellence - Innovative science for sustainable management of coral reef biodiversity. Our vision is to apply enabling technologies to capture the national benefit arising from research excellence. The Centre has enormous capacity to provide economic, cultural, environmental and social benefits for Australia. The coral reefs of Australia, particularly the Great Barrier Reef, Ningaloo Reef, and Lord Howe Island World Heritage Area are Australian national icons, of great economic, so ....ARC Centre of Excellence - Innovative science for sustainable management of coral reef biodiversity. Our vision is to apply enabling technologies to capture the national benefit arising from research excellence. The Centre has enormous capacity to provide economic, cultural, environmental and social benefits for Australia. The coral reefs of Australia, particularly the Great Barrier Reef, Ningaloo Reef, and Lord Howe Island World Heritage Area are Australian national icons, of great economic, social, and aesthetic value to this country. In collaboration with our Partners, we will be the premier providers of the scientific expertise that underpins the management of Australian reefs, which is vital for the sustainable use of biodiversity goods and services (e.g. by the tourist industry, fisheries, and recreational users).Read moreRead less
Modelling and control of mosquito-borne diseases in Darwin using long-term monitoring. Management of mosquito populations is a high public health priority because these insects can spread diseases such as malaria, dengue, Ross River virus, Barmah Forest virus, Murray Valley encephalitis, Japanese encephalitis and Kunjin/West Nile virus. Our research into the effectiveness of mosquito control programs in Darwin is of immediate national relevance and priority given the need to Safeguard Australia ....Modelling and control of mosquito-borne diseases in Darwin using long-term monitoring. Management of mosquito populations is a high public health priority because these insects can spread diseases such as malaria, dengue, Ross River virus, Barmah Forest virus, Murray Valley encephalitis, Japanese encephalitis and Kunjin/West Nile virus. Our research into the effectiveness of mosquito control programs in Darwin is of immediate national relevance and priority given the need to Safeguard Australia from invasive diseases. There is an urgency to undertake our research because global environmental change and increasing movements of people (particularly military personnel) from overseas regions where these diseases are endemic is increasing the vulnerability of northern Australia to the (re)establishment of mosquito borne diseases.Read moreRead less
A global standard for the status of Wetlands of International Importance. The project will develop and test a new global standard for the assessment and reporting on ecological condition of internationally important wetlands, listed under the Ramsar Convention. It has four aims: establishment of a strategic adaptive management and governance framework, a meta-analysis of the 2,303 internationally listed wetlands, development of a protocol for assessment and prediction and delivering a digital re ....A global standard for the status of Wetlands of International Importance. The project will develop and test a new global standard for the assessment and reporting on ecological condition of internationally important wetlands, listed under the Ramsar Convention. It has four aims: establishment of a strategic adaptive management and governance framework, a meta-analysis of the 2,303 internationally listed wetlands, development of a protocol for assessment and prediction and delivering a digital reporting platform for effective management. The project is significant because it tackles the decline of freshwater ecosystems, by targeting the most prominent wetlands. It also assists state and national governments to meet their obligations under the Ramsar Convention and most importantly guides more effective management.Read moreRead less
Developing Ecosystem Services Economies for northern Australia. The project aims to advance economic opportunities for Indigenous communities across Northern Australia by developing culturally appropriate ecosystem services economies. The project will offer new alternatives for collectively addressing chronic Indigenous socio-economic issues and pressing environmental issues. Expected outcomes include a co-developed ecosystem services economies business model with a toolkit, involving Indigenous ....Developing Ecosystem Services Economies for northern Australia. The project aims to advance economic opportunities for Indigenous communities across Northern Australia by developing culturally appropriate ecosystem services economies. The project will offer new alternatives for collectively addressing chronic Indigenous socio-economic issues and pressing environmental issues. Expected outcomes include a co-developed ecosystem services economies business model with a toolkit, involving Indigenous and business stakeholders, for establishing innovative enterprises across northern Australia. Key benefits include new ecosystem services-based enterprises; sustainable land sector development; jobs in remote locations; improved well-being of Indigenous peoples; and better environmental management. Read moreRead less
Australian Laureate Fellowships - Grant ID: FL120100108
Funder
Australian Research Council
Funding Amount
$2,849,770.00
Summary
Surrogate ecology: when and where can it work to improve environmental management? New empirical analyses and new ecological theory will be used to discover where, when and how to best apply surrogates. New capacity will be built in surrogate ecology and the results used to significantly enhance the effective management and monitoring of environments and biodiversity both in Australia and worldwide.
Preventing and reversing population declines of northern quolls. This project seeks to develop novel effective strategies to halt and reverse declines in northern quolls by improving their ‘toad-smart’ behaviour. The spread of cane toads threaten northern quolls, which are marsupial predators. We cannot halt the toad invasion, but we can train quolls not to eat cane toads. Trained quolls can survive long term in toad-infested landscapes, and their offspring can learn not to eat toads. This proje ....Preventing and reversing population declines of northern quolls. This project seeks to develop novel effective strategies to halt and reverse declines in northern quolls by improving their ‘toad-smart’ behaviour. The spread of cane toads threaten northern quolls, which are marsupial predators. We cannot halt the toad invasion, but we can train quolls not to eat cane toads. Trained quolls can survive long term in toad-infested landscapes, and their offspring can learn not to eat toads. This project builds on this work by focusing on cultural and genetic transmission of toad-smart behaviour. The project could save numerous quoll populations from extinction.Read moreRead less
Vulnerability of Australian bats to white-nose syndrome. Australia's unique wildlife is inherently at risk from invasive novel pathogens. White-nose syndrome is an emerging fungal disease that has decimated bat populations across North America. This fungal disease is likely to soon jump continents and also seriously threaten Australia's bat fauna. This project aims to quantify the risk of exposure to this fungus and understand the sensitivity of Australian bat populations to white-nose syndrome ....Vulnerability of Australian bats to white-nose syndrome. Australia's unique wildlife is inherently at risk from invasive novel pathogens. White-nose syndrome is an emerging fungal disease that has decimated bat populations across North America. This fungal disease is likely to soon jump continents and also seriously threaten Australia's bat fauna. This project aims to quantify the risk of exposure to this fungus and understand the sensitivity of Australian bat populations to white-nose syndrome mortality. Expected outcomes include spatially-explicit, species-specific models of vulnerability to white-nose syndrome for bat populations across south-eastern Australia, essential for directing actions to prevent, detect and mitigate the impacts of this potentially catastrophic wildlife disease.Read moreRead less