Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0775612
Funder
Australian Research Council
Funding Amount
$700,000.00
Summary
Nanomaterials Optical Characterisation Facility. Nanotechnology is expected to revolutionize a wide variety of fields, from medicine to agriculture, communications and electronics. However, the small length scales involved present significant challenges with regard to characterising the nanomaterials produced. The Nanomaterials Optical Characterisation facility will provide state-of-the-art equipment for examining the properties of nanomaterials. The equipment will be pivotal in assisting the de ....Nanomaterials Optical Characterisation Facility. Nanotechnology is expected to revolutionize a wide variety of fields, from medicine to agriculture, communications and electronics. However, the small length scales involved present significant challenges with regard to characterising the nanomaterials produced. The Nanomaterials Optical Characterisation facility will provide state-of-the-art equipment for examining the properties of nanomaterials. The equipment will be pivotal in assisting the development of next-generation medicines, implants, optical devices and surface coatings, further strengthening Australia's formidable reputation in these areas.Read moreRead less
Fluid Dynamics of Circulation: Focus on the Kidney. In Australia, about 30% of adults have hypertension, a major risk factor for heart disease, accounting for about 40% of all deaths. Problems in renal circulation are likely factors leading to hypertension. A detailed understanding of the renal circulation, of whose hydraulic characteristics we have limited knowledge, is required before we can cure or prevent hypertension. We will determine how the size, structure and geometry of the blood vesse ....Fluid Dynamics of Circulation: Focus on the Kidney. In Australia, about 30% of adults have hypertension, a major risk factor for heart disease, accounting for about 40% of all deaths. Problems in renal circulation are likely factors leading to hypertension. A detailed understanding of the renal circulation, of whose hydraulic characteristics we have limited knowledge, is required before we can cure or prevent hypertension. We will determine how the size, structure and geometry of the blood vessels influence the function of the kidney. This will lead to predictive models to aid the design and interpretation of physiological studies and the combat of hypertension. It will also help in the ongoing development of bioartificial kidneys to replace present dialysis systems. Read moreRead less
Development of Novel Pesticidal Agents. We have discovered a family of naturally occurring plant proteins called the cyclotides that have potent insecticidal activity against Helicoverpa species, one of the major pests on cotton and corn in Australia and world wide. Preliminary evidence has shown that they also have activity against major pests to livestock in Australia, including sheep blowflies. To develop these proteins as potential pesticidal agents it is necessary to understand the struct ....Development of Novel Pesticidal Agents. We have discovered a family of naturally occurring plant proteins called the cyclotides that have potent insecticidal activity against Helicoverpa species, one of the major pests on cotton and corn in Australia and world wide. Preliminary evidence has shown that they also have activity against major pests to livestock in Australia, including sheep blowflies. To develop these proteins as potential pesticidal agents it is necessary to understand the structural basis for their activity. We will do this by chemically synthesising peptides with selected residues mutated to determine their effects on activity.Read moreRead less
Multiblock copolymer synthesis for nano-engineered materials. This project aims to develop methodology for environmentally friendly and industrially applicable synthesis of new types of advanced polymeric materials comprising multiblock copolymers. Polymeric materials play an important role in society with applications from bulk plastics to advanced technological applications. This would enable the creation of advanced materials with specific engineering targets and applications ranging from nan ....Multiblock copolymer synthesis for nano-engineered materials. This project aims to develop methodology for environmentally friendly and industrially applicable synthesis of new types of advanced polymeric materials comprising multiblock copolymers. Polymeric materials play an important role in society with applications from bulk plastics to advanced technological applications. This would enable the creation of advanced materials with specific engineering targets and applications ranging from nanomedicine to materials science.Read moreRead less
Dynamics and control of fluid-structure-free surface interactions. This project aims to research the apparently opposing effects of vortex shedding and free surface damping, individually and jointly, and the control or excitation of the vibrations for two generic bluff bodies: the cylinder and the sphere. Flow-induced vibrations of bluff bodies under or piercing water surfaces can damage floating off-shore marine structures and tethered bodies. On the other hand, harvesting energy from ocean cur ....Dynamics and control of fluid-structure-free surface interactions. This project aims to research the apparently opposing effects of vortex shedding and free surface damping, individually and jointly, and the control or excitation of the vibrations for two generic bluff bodies: the cylinder and the sphere. Flow-induced vibrations of bluff bodies under or piercing water surfaces can damage floating off-shore marine structures and tethered bodies. On the other hand, harvesting energy from ocean currents needs large flow-induced vibrations. The intended outcomes are new modes of body vibration, wake transitions and means to control fluid-structure interactions. This research could benefit many processes in offshore marine engineering, submarine bodies and mixing vessels, where understanding and controlling fluid-structure interactions of bluff bodies can mitigate costly and dangerous induced vibrations.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE190101501
Funder
Australian Research Council
Funding Amount
$408,000.00
Summary
Printed back electrodes enabling low-cost perovskite solar cells. This project aims to address back electrode material, a bottleneck functional material in state-of-the-art perovskite solar cells (PSCs). By engineering printable and conductive materials based on carbon and gold nanowires, the project expects to enable highly-efficient and scalable PSCs while reducing cost of materials and production. These expected outcomes are to be implemented in PSCs and their impact rigorously tested in rese ....Printed back electrodes enabling low-cost perovskite solar cells. This project aims to address back electrode material, a bottleneck functional material in state-of-the-art perovskite solar cells (PSCs). By engineering printable and conductive materials based on carbon and gold nanowires, the project expects to enable highly-efficient and scalable PSCs while reducing cost of materials and production. These expected outcomes are to be implemented in PSCs and their impact rigorously tested in research cells to large-area PSCs modules produced through industry-relevant, scalable, and low-cost printing and coating methods. This will provide significant benefits to Australian industry, from small to medium enterprises to larger utility power companies, while creating economic opportunities and enabling sustainable societies.Read moreRead less
Industrial Transformation Training Centres - Grant ID: IC230100035
Funder
Australian Research Council
Funding Amount
$5,000,000.00
Summary
ARC Training Centre in Critical Resources for the Future. The proposed ARC Training Centre in Critical Resources aims to train the next generation of geoscientists needed to enable resourcing of the transition to a high-tech, clean energy society. Training of PhD students and postdoctoral scientists will primarily focus on bridging the gap between mineral systems science, mineral exploration protocols and ore processing/metallurgical extraction. This will provide geoscientists with an essential ....ARC Training Centre in Critical Resources for the Future. The proposed ARC Training Centre in Critical Resources aims to train the next generation of geoscientists needed to enable resourcing of the transition to a high-tech, clean energy society. Training of PhD students and postdoctoral scientists will primarily focus on bridging the gap between mineral systems science, mineral exploration protocols and ore processing/metallurgical extraction. This will provide geoscientists with an essential understanding of the whole value chain of the critical resources of the future.
Read moreRead less
ARC Centre of Excellence for Robotic Vision. Robots are vital to Australia's future prosperity in the face of high relative wages, low or decreasing productivity, and impending labour shortages. However the work and workplaces of our most important industries are unstructured and changeable and current robots are challenged by their inability to quickly, safely and reliably "see" and "understand" what is around them. The Centre's research will create the fundamental science and technologies th ....ARC Centre of Excellence for Robotic Vision. Robots are vital to Australia's future prosperity in the face of high relative wages, low or decreasing productivity, and impending labour shortages. However the work and workplaces of our most important industries are unstructured and changeable and current robots are challenged by their inability to quickly, safely and reliably "see" and "understand" what is around them. The Centre's research will create the fundamental science and technologies that will allow robots to see as we do, and overcome the last barrier to the ubiquitous deployment of robots into society for the benefit of all.Read moreRead less
ARC Research Network in Enterprise Information Infrastructure. EII targets consolidated research towards the comprehensive development & establishment of advanced information infrastructures. Its prime purpose is to provide a forum for intellectual exchange by diverse yet complementary research groups, to address the fundamental research problems faced by scientific & business communities when dealing with deployment of information technology to globally distributed, and data intensive environme ....ARC Research Network in Enterprise Information Infrastructure. EII targets consolidated research towards the comprehensive development & establishment of advanced information infrastructures. Its prime purpose is to provide a forum for intellectual exchange by diverse yet complementary research groups, to address the fundamental research problems faced by scientific & business communities when dealing with deployment of information technology to globally distributed, and data intensive environments. EII will address 3 tightly coupled research themes: Ability to interoperate across existing heterogenous platforms & applications; Efficient processing of very large data sets; Technology adoption & impact. Generic results will be applicable to e-science and large business information systems installations.Read moreRead less
Industrial Transformation Research Hubs - Grant ID: IH130200012
Funder
Australian Research Council
Funding Amount
$2,748,358.00
Summary
ARC Research Hub for Basin GEodyNamics and Evolution of SedImentary Systems (GENESIS). ARC Research Hub for Basin GEodyNamics and Evolution of SedImentary Systems (GENESIS). This Research Hub aims to undertake simultaneous modelling of deep Earth and surface processes, spanning basin scales to individual sediment grains. The Hub will develop and apply cutting-edge basin simulation approaches to transform the seeding and testing of basin exploration models, extending their viability to complex, ....ARC Research Hub for Basin GEodyNamics and Evolution of SedImentary Systems (GENESIS). ARC Research Hub for Basin GEodyNamics and Evolution of SedImentary Systems (GENESIS). This Research Hub aims to undertake simultaneous modelling of deep Earth and surface processes, spanning basin scales to individual sediment grains. The Hub will develop and apply cutting-edge basin simulation approaches to transform the seeding and testing of basin exploration models, extending their viability to complex, inaccessible remote and deep exploration targets. The Hub will fuse multidimensional data into five dimensional basin models (space and time, with uncertainty estimates) by coupling the evolution of mantle flow, crustal deformation, erosion and sedimentary processes, achieving a quantum leap in basin modelling and petroleum systems analysis.Read moreRead less