Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0775612
Funder
Australian Research Council
Funding Amount
$700,000.00
Summary
Nanomaterials Optical Characterisation Facility. Nanotechnology is expected to revolutionize a wide variety of fields, from medicine to agriculture, communications and electronics. However, the small length scales involved present significant challenges with regard to characterising the nanomaterials produced. The Nanomaterials Optical Characterisation facility will provide state-of-the-art equipment for examining the properties of nanomaterials. The equipment will be pivotal in assisting the de ....Nanomaterials Optical Characterisation Facility. Nanotechnology is expected to revolutionize a wide variety of fields, from medicine to agriculture, communications and electronics. However, the small length scales involved present significant challenges with regard to characterising the nanomaterials produced. The Nanomaterials Optical Characterisation facility will provide state-of-the-art equipment for examining the properties of nanomaterials. The equipment will be pivotal in assisting the development of next-generation medicines, implants, optical devices and surface coatings, further strengthening Australia's formidable reputation in these areas.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE100100203
Funder
Australian Research Council
Funding Amount
$700,000.00
Summary
Advanced Geochemical Facility for Climate and Environmental Change Research: a Western Australian/Indian Ocean focus. Research outcomes from this new facility will empower government bodies, resource industries, and indigenous stakeholders with key baseline information to ensure the sustainable and sensitive development of west Australia's unique coastal and offshore regions, across heavily populated and pristine environments. This includes projecting future impacts on local industries (eg. ener ....Advanced Geochemical Facility for Climate and Environmental Change Research: a Western Australian/Indian Ocean focus. Research outcomes from this new facility will empower government bodies, resource industries, and indigenous stakeholders with key baseline information to ensure the sustainable and sensitive development of west Australia's unique coastal and offshore regions, across heavily populated and pristine environments. This includes projecting future impacts on local industries (eg. energy, fisheries, tourism), rising shorelines with critical implications for existing and developing communities, and enhancing the resilience of habitats at risk. These are crucial to mitigate the impacts from environmental change that could severely affect our regional and national economies, as well as the style and quality of life of current and future generations.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE150100636
Funder
Australian Research Council
Funding Amount
$375,000.00
Summary
Efficient Coding for Distributed-input Distributed-output Wireless Systems. Inter-user interference is becoming the dominant bottleneck in state-of-the-art wireless networks. This project aims to address this bottleneck problem by studying a new paradigm, referred to as a Distributed-Input Distributed-Output (DIDO) wireless system, which makes the best use of interference. Results from information theory and modern coding techniques will be advanced to develop new design principles and novel ph ....Efficient Coding for Distributed-input Distributed-output Wireless Systems. Inter-user interference is becoming the dominant bottleneck in state-of-the-art wireless networks. This project aims to address this bottleneck problem by studying a new paradigm, referred to as a Distributed-Input Distributed-Output (DIDO) wireless system, which makes the best use of interference. Results from information theory and modern coding techniques will be advanced to develop new design principles and novel physical-layer coding techniques of DIDO systems, leading to substantially improved throughput, reliability, energy efficiency and robustness. This project aims to develop fundamentally enhanced wireless infrastructure with targeted applications in cellular and wireless networks, satellite communications and wireless sensor networks.Read moreRead less
Fluid Dynamics of Circulation: Focus on the Kidney. In Australia, about 30% of adults have hypertension, a major risk factor for heart disease, accounting for about 40% of all deaths. Problems in renal circulation are likely factors leading to hypertension. A detailed understanding of the renal circulation, of whose hydraulic characteristics we have limited knowledge, is required before we can cure or prevent hypertension. We will determine how the size, structure and geometry of the blood vesse ....Fluid Dynamics of Circulation: Focus on the Kidney. In Australia, about 30% of adults have hypertension, a major risk factor for heart disease, accounting for about 40% of all deaths. Problems in renal circulation are likely factors leading to hypertension. A detailed understanding of the renal circulation, of whose hydraulic characteristics we have limited knowledge, is required before we can cure or prevent hypertension. We will determine how the size, structure and geometry of the blood vessels influence the function of the kidney. This will lead to predictive models to aid the design and interpretation of physiological studies and the combat of hypertension. It will also help in the ongoing development of bioartificial kidneys to replace present dialysis systems. Read moreRead less
Development of Novel Pesticidal Agents. We have discovered a family of naturally occurring plant proteins called the cyclotides that have potent insecticidal activity against Helicoverpa species, one of the major pests on cotton and corn in Australia and world wide. Preliminary evidence has shown that they also have activity against major pests to livestock in Australia, including sheep blowflies. To develop these proteins as potential pesticidal agents it is necessary to understand the struct ....Development of Novel Pesticidal Agents. We have discovered a family of naturally occurring plant proteins called the cyclotides that have potent insecticidal activity against Helicoverpa species, one of the major pests on cotton and corn in Australia and world wide. Preliminary evidence has shown that they also have activity against major pests to livestock in Australia, including sheep blowflies. To develop these proteins as potential pesticidal agents it is necessary to understand the structural basis for their activity. We will do this by chemically synthesising peptides with selected residues mutated to determine their effects on activity.Read moreRead less
Multiblock copolymer synthesis for nano-engineered materials. This project aims to develop methodology for environmentally friendly and industrially applicable synthesis of new types of advanced polymeric materials comprising multiblock copolymers. Polymeric materials play an important role in society with applications from bulk plastics to advanced technological applications. This would enable the creation of advanced materials with specific engineering targets and applications ranging from nan ....Multiblock copolymer synthesis for nano-engineered materials. This project aims to develop methodology for environmentally friendly and industrially applicable synthesis of new types of advanced polymeric materials comprising multiblock copolymers. Polymeric materials play an important role in society with applications from bulk plastics to advanced technological applications. This would enable the creation of advanced materials with specific engineering targets and applications ranging from nanomedicine to materials science.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE130100203
Funder
Australian Research Council
Funding Amount
$385,000.00
Summary
Autonomous benthic observing system. This project seeks to improve our ability to monitor marine habitats and characterise their variability by enhancing the Integrated Marine Observing system (IMOS) Autonomous Underwater Vehicle (AUV) Facility. The new AUV infrastructure will reduce operating costs, increase robustness of the sampling effort and insure continued operation for the next decade.
Pro-Fluorescent Aryl Nitroxides: New Probes for Polymer Lifetime and Kinetics Research. Internal aryl rings present in novel probes developed for this project impart fluorescence which is efficiently and internally quenched by the presence of a paramagnetic nitroxide group. Scavenging of radicals by the nitroxide however "switches on" the fluorescence and this enables powerful new fluorescence-based detection levels for the technique of nitroxide free radical scavenging. Such sensitivity is a ....Pro-Fluorescent Aryl Nitroxides: New Probes for Polymer Lifetime and Kinetics Research. Internal aryl rings present in novel probes developed for this project impart fluorescence which is efficiently and internally quenched by the presence of a paramagnetic nitroxide group. Scavenging of radicals by the nitroxide however "switches on" the fluorescence and this enables powerful new fluorescence-based detection levels for the technique of nitroxide free radical scavenging. Such sensitivity is applicable to polymerization kinetics studies, as well as providing new means for the determination of materials lifetimes. The development of pro-fluorescent markers as indicators for polymer degradation would be a significant outcome for materials where component failure has a major negative impact.Read moreRead less
Dynamics and control of fluid-structure-free surface interactions. This project aims to research the apparently opposing effects of vortex shedding and free surface damping, individually and jointly, and the control or excitation of the vibrations for two generic bluff bodies: the cylinder and the sphere. Flow-induced vibrations of bluff bodies under or piercing water surfaces can damage floating off-shore marine structures and tethered bodies. On the other hand, harvesting energy from ocean cur ....Dynamics and control of fluid-structure-free surface interactions. This project aims to research the apparently opposing effects of vortex shedding and free surface damping, individually and jointly, and the control or excitation of the vibrations for two generic bluff bodies: the cylinder and the sphere. Flow-induced vibrations of bluff bodies under or piercing water surfaces can damage floating off-shore marine structures and tethered bodies. On the other hand, harvesting energy from ocean currents needs large flow-induced vibrations. The intended outcomes are new modes of body vibration, wake transitions and means to control fluid-structure interactions. This research could benefit many processes in offshore marine engineering, submarine bodies and mixing vessels, where understanding and controlling fluid-structure interactions of bluff bodies can mitigate costly and dangerous induced vibrations.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE190101501
Funder
Australian Research Council
Funding Amount
$408,000.00
Summary
Printed back electrodes enabling low-cost perovskite solar cells. This project aims to address back electrode material, a bottleneck functional material in state-of-the-art perovskite solar cells (PSCs). By engineering printable and conductive materials based on carbon and gold nanowires, the project expects to enable highly-efficient and scalable PSCs while reducing cost of materials and production. These expected outcomes are to be implemented in PSCs and their impact rigorously tested in rese ....Printed back electrodes enabling low-cost perovskite solar cells. This project aims to address back electrode material, a bottleneck functional material in state-of-the-art perovskite solar cells (PSCs). By engineering printable and conductive materials based on carbon and gold nanowires, the project expects to enable highly-efficient and scalable PSCs while reducing cost of materials and production. These expected outcomes are to be implemented in PSCs and their impact rigorously tested in research cells to large-area PSCs modules produced through industry-relevant, scalable, and low-cost printing and coating methods. This will provide significant benefits to Australian industry, from small to medium enterprises to larger utility power companies, while creating economic opportunities and enabling sustainable societies.Read moreRead less